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ABSTRACT

Distance sets of large sets of integer points are studied in dimensions at

least 5. To any ε > 0 a positive integer Qε is constructed with the following

property; If A is any set of integer points of upper density at least ε, then

all large multiples of Q2
ε occur as squares of distances between the points

of the set A.

1. Introduction.

A result of Furstenberg, Katznelson and Weiss [FKW] states that if A is a

measurable subset of R
2 of positive upper density, then its distance set: d(A) =

{|x− y| : x ∈ A, y ∈ A} contains all large numbers.

Our aim is to prove a similar result for subsets of Z
n (n > 4) of positive

density ε, namely that: d2(A) = {|m − l|2 : m ∈ A, l ∈ A} contains all large

multiples of a fixed number Q2
ε, which depends only on the density ε and the

dimension n.

Note that one cannot takeQε = 1 as the set A may fall into a fixed congruence

class of some integer q, and if q ≤ ε−1/n then such a set A would have density

q−n ≥ ε, and all elements of d2(A) would be divisible by q2. Moreover, this

implies that Q′
ε divides Qε, where Q′

ε is the least common multiple of all q ≤
ε−1/n. In particular, by the prime number theorem Qε ≥ Q′

ε ≥ exp(c ε−1/n)
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252 ÁKOS MAGYAR Isr. J. Math.

with some c > 0. The number Qε we construct will be similar and will satisfy

the upper bound: Qε ≤ exp(Cn ε
−6/n−4), where Cn is a constant depending

only on the dimension n.

Such results are impossible in dimensions n ≤ 3. Indeed, even if one takes

A = Z
n, the equation: d = |m− l|2 has no solution if d = 4a(8k+ 1) by Gauss’

characterization, however, every number has multiples of this form. We prove

our result in dimensions n ≥ 5 leaving the case n = 4 open.

A corollary is that the gaps between consecutive distances d < d′, d, d′ ∈ d(A)

satisfy: d′ − d ≤ Cεd
−1/2 where ε denotes the upper density of the set A.

Distance sets of discrete subsets of R
n have been studied before, in [I L] it was

shown that the gaps between consecutive distances from discrete subsets A of

R
2 tend to 0, if A has a point in every square of size

√
5. In fact, this was proved

more generally when the distances are associated to convex sets, see also [K]

for similar higher dimensional results. Our proof may be generalized when the

distances are defined by certain positive homogeneous polynomials, however we

do not pursue such generalizations here.

2. Main results.

We say that a set A ⊆ Z
n has upper density at least ε, and write δ(A) ≥ ε, if

there exists a sequence of cubes BRj
of sizes Rj → ∞, not necessarily centered

at the origin, such that

(2.1) |A ∩BRj
| ≥ εRn

j for all j,

where |A| denotes the number of elements of the set A. As usual Z
n denotes

the integer lattice and N stands for the natural numbers.

Theorem 1: Let n ≥ 5, ε > 0 and let A ⊆ Z
n such that δ(A) ≥ ε.

Then there exists Qε ∈ N depending only on ε, and ΛA ∈ N depending on

the set A, such that

(2.2) λQ2
ε ∈ d2(A) = {|m− l|2 : m ∈ A, l ∈ A}

for every λ ≥ ΛA.

In fact, a more quantitative version will be proved

Theorem 2: Let n ≥ 5, ε > 0. Then there exist a pair Jε, Qε ∈ N depending

only on ε, such that the following holds.
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If 0 < λ1 < λ2 < · · ·< λJε
is any sequence of natural numbers with λj+1 ≥

10λj and if A ⊆ Z
n ∩BR such that |A| ≥ εRn and R ≥ 10λ

1/2
Jε

, then

(2.3) ∃ j ≤ Jε such that λjQ
2
ε ∈ d2(A)

It is clear that Theorem 2 implies Theorem 1. Indeed, let ε > 0, Jε, Qε as

in Theorem 2. If Theorem 1 does not hold for Qε, then there is a set A ⊆ Z
n

with upper density δ(A) ≥ ε and infinite sequence λj such that 10λj < λj+1

and λjQ
2
ε /∈ d2(A) for all j. Choosing a cube BR with size R > 10λ

1/2
Jε

such

that |A ∩BR| ≥ εRn contradicts (2.3).

It will be convenient to introduce the following terminology; a triple (ε,Q, J)

is called regular if the conclusion of Theorem 2 holds for that triple. It is clear

that the triple (1,1,1) is regular as every positive integer is the sum of 5 squares,

and also the regularity of (ε,Q, J) implies that of (ε′, Q, J) for ε ≤ ε′.

Thus it is enough to show that for each εk = (9/10)k there exists a pair of

natural numbers Qk, Jk such that (εk, Qk, Jk) is regular. This will be shown

by induction on k, constructing Qk = Qk−1qk and Jk recursively to εk. The

point is that induction will enable one to assume that A is well-distributed in

the congruence classes of a fixed modulus qk, to be chosen later.

Indeed for s ∈ Z
n, let Aqk,s = {m ∈ Z

n : qkm + s ∈ A}. If there is an

s such that the density δ(Aqk,s) ≥ εk−1, then by induction it follows that

λQ2
k−1 ∈ d2(Aqk,s) for all large λ, and hence λQ2

k ∈ d2(A). Thus one can

assume that δ(A) ≥ εk, but δ(Aqk,s) ≤ εk−1 = (10/9)εk for each s ∈ Z
n.

Our proof was motivated by the short Fourier analytic proof of the Fürsten-

berg-Katznelson-Weiss theorem given in [B]. The starting point is to express

the number of pairs m ∈ A, l ∈ A such that |m− l|2 = λ in the form

N(A, λ) =
∑

m,l

1A(m)1A(l)σλ(m− l) = 〈1A, 1A ∗ σλ〉

where 1A denotes the indicator function of the set A and σλ stands for that of

the of the set of integer points on the sphere of radius λ1/2. Thus by Plancherel

(2.4) N(A, λ) = 〈1̂A, 1̂A σ̂λ〉 =

∫

Πn

|1̂A(ξ)|2σ̂λ(ξ) dξ,

where

(2.5) σ̂λ(ξ) =
∑

|m|2=λ

e2πim·ξ

is the Fourier transform of σλ, and Πn denotes the n-dimensional torus.
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Note that |σ̂λ(ξ)| ≤ σ̂λ(0) . λn/2−1 for n ≥ 5, using the well-known fact in

number theory, that |{m ∈ Z
n : |m|2 = λ}| . λn/2−1. Thus if A ⊆ BR then

by (2.4):

(2.6) N(A, λ) . |A|λn/2−1 ≤ Rnλn/2−1.

Here A . B means that A ≤ cnB with a constant cn > 0 depending only on

the dimension n, and whose exact value may change from place to place.

The behavior of the exponential sum σ̂λ(ξ) is described in [MSW] and summa-

rized in the asymptotic formula (3.3). We will use the fact that it is concentrated

near rational points of small denominator. More precisely, given ε > 0, there is

a Qε ∈ N and a λε > 0 depending only on ε, such that for λ ≥ λε

|σ̂λ(ξ)| . ε3λ
n
2 −1 if |ξ − l/Qε| & ε−6/(n−1) λ−1/2

for every rational point l/Qε, l ∈ Z
n. This implies

(2.7)

∫

Πn

|1̂A(ξ)2 σ̂λ(ξ)

(

1 −
∑

l∈Zn

ψ̂1
λ(ξ − l/Qε)

)

| dξ . ε3Rnλn/2−1

where 0 ≤ ψ̂1
λ(ξ) ≤ 1 is smooth cut-off function, such that ψ̂1

λ(0) = 1 and is

supported on the ball |ξ| . ε−6/(n−1) λ−1/2. This will be proved in Section 3.

In Section 4, we prove our key estimate, namely that if A ⊆ BR, |A| ≥ εRn

and if A is uniformly distributed in the congruence classes of a certain modulus

qε, then

(2.8)

∫

Πn

|1̂A(ξ)|2σ̂λ(ξ)
∑

l∈Zn

ψ̂2
λ(ξ − l/Qε) dξ & ε3Rnλn/2−1,

where ψ2
λ is a smooth function whose Fourier transform ψ̂2

λ(ξ) is supported on

|ξ| . λ−1/2.

Now assume that, in the settings of Theorem 2, N(A, λ) = 0 for each

λ = λjQ
2
ε (Jε/2 ≤ j ≤ Jε). Using the decomposition

1 =

(

1 −
∑

l∈Zn

ψ̂1
λ(ξ − l/Qε)

)

+
∑

l∈Zn

ψ̂2
λ(ξ − l/Qε) +

∑

l∈Zn

φ̂λ(ξ − l/Qε)

in (2.4), it follows from (2.7) and (2.8) and from the uniform bound: |σ̂λ(ξ)| .

λn/2−1, that

(2.9)

∫

Πn

|1̂A(ξ)|2
∣

∣

∣

∣

∑

l∈Zn

φ̂λ(ξ − l/Qε)

∣

∣

∣

∣

dξ & ε3Rn,
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where φ̂λ(ξ) = ψ̂1
λ(ξ) − ψ̂2

λ(ξ) is a smooth function essentially supported on the

annulus:

λ−1/2 ≤ |ξ| ≤ ε−6/(n−1) λ−1/2.

Thus the supports of the integrands in (2.9) for well-separated values of λ =

λjQ
2
ε are (essentially) disjoint, and hence the sum of the left side (2.9) over such

j’s would be bounded by
∫

Πn |1̂A(ξ)|2 dξ = |A| ≤ Rn which contradicts (2.9) if

Jε is chosen large enough.

3. Upper bounds.

In this section we prove the upper bound (2.7), which is an easy corollary of

the following asymptotic formula, proved in [MSW] (see Proposition 4.1):

(3.1) σ̂λ(ξ) = ωnλ
n/2−1

∞
∑

r=1

mr,λ(ξ) + E(ξ, λ) where sup
ξ

|E(ξ, λ)| . λn/4;

and the main terms are of the form

(3.2) mr,λ(ξ) =
∑

k∈Zn

S(k, r, λ)φ(rξ − k) dσ̃(λ1/2(ξ − k/r)).

Moreover, by the standard estimate for Gauss sums

(3.3) |S(k, r, λ)| = |q−n
∑

(a,r)=1

∑

s∈Zn
r

e2πi a(|s|2−λ)+s·l
r | ≤ r−n/2+1.

The cut-off function φ(ξ) is supported in a small neighborhood of the origin,

and the Fourier transform of the surface area measure of the unit sphere satisfies

(3.4) |dσ̃(ξ)| . (1 + |ξ|)−(n−1)/(2).

Proposition 1: Let n ≥ 5, ε > 0 and c > 0 be given. Then there is a constant

Cn > 0 depending only on c and the dimension n, such that the following holds.

If Q ∈ N is such that r divides Q for all r ≤ Cn ε
−6(n−4), moreover if

λ ≥ Cn ε
−12/(n−4) and ξ ∈ Πn satisfies

(3.5) |ξ − l/Q| ≥ Cn ε
−6/(n−1)λ−1/2,

for all l ∈ Z
n, then one has

(3.6) |σ̂λ(ξ)| ≤ c ε3λn/2−1.
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Proof. By equation (3.1), one has for n ≥ 5

(3.7) |E(ξ, λ)| ≤ c1λ
n/4 ≤ (c/3) ε3λn/2−1

if λ ≥ Cn ε
− 12

n−4 and Cn is large enough with respect to c1, c and n. There is

at most one non-zero term in the expression for mr,λ(ξ), hence by (3.3)

(3.8)
∑

r≥K

|mr,λ(ξ)| ≤ c2K
−n/2+2 ≤ (c/3) ε3

if one chooses K ≥ Cn ε
−6/(n−4).

If Q is such that r divides Q for all r ≤ K, then every rational point k/r can

be written in the form l/Q, then (3.4) and (3.5) implies

(3.9)
∑

r≤K

|mr,λ(ξ)| ≤ c3 max
k, r≤K

|λ1/2(ξ − k/r)|−(n−1)/2 ≤ (c/3) ε3.

The Proposition follows by adding (3.7)–(3.9)

In what follows, Cn will denote a large enough constant of our choice, which

guarantees the validity of certain inequality, and whose exact value may change

from place to place.

The above estimate shows that σ̂λ(ξ) is uniformly small on the complement

of the neighborhoods Ul = {ξ : |ξ − l/Qε| ≥ Cn ε
−6/(n−1)λ−1/2}. Thus it can

be used to bound the contribution of this set to the integral N(A, λ) given in

(2.4). To be more precise, let A ⊆ BR such that |A| ≥ εRn, and let ψ > 0 be a

smooth function satisfying

(3.10) 1 = ψ̂(0) ≥ ψ̂(ξ) > 0 for all ξ and supp ψ̂ ⊆ [−1/2, 1/2]
n
.

For Q ∈ N and L > 0 define the following expressions

N1(A, λ,Q,L) =

∫

Πn

|1̂A(ξ)|2 σ̂λ(ξ)

(

1 −
∑

l∈Zn

ψ̂(L(ξ − l/Q))

)

dξ(3.11)

N2(A, λ,Q,L) =

∫

Πn

|1̂A(ξ)|2 σ̂λ(ξ)
∑

l∈Zn

ψ̂(L(ξ − l/Q)) dξ.

Lemma 1: Let ε > 0 and c > 0 be given. Then there is a constant Cn > 0, such

that if Q ∈ N is a multiple of all r ≤ Cn ε
−6/(n−4), moreover, if L ≥ CnQ and

λ ≥ Cn ε
−12/(n−1)−3L2 then

(3.12) |N1(A, λ,Q,L)| ≤ c ε3λn/2−1Rn.
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Proof. Since
∫

Πn |1̂A(ξ)|2 dξ = |A| ≤ Rn it is enough to show that

(3.13) sup
ξ∈Πn

|σ̂λ(ξ)|
∣

∣

∣

∣

1 −
∑

l∈Zn
Q

ψ̂(L(ξ − l/Q)

∣

∣

∣

∣

≤ c ε3λn/2−1

Note that the supports of the functions ψ̂(L(ξ−l/Q)) are disjoint for different

values of l, thus if there is an l0 such that: |ξ − l0/Q| ≤ c1 ε
3
2L−1, where c1 is

small enough with respect to c, then
∣

∣

∣

∣

1 −
∑

l∈Zn

ψ̂(L(ξ − l/Q))

∣

∣

∣

∣

= |1 − ψ̂(L(ξ − l0/Q))| ≤ c ε3

using the fact that |1 − ψ̂(η)| . |η|2 and (3.13) follows. In the opposite case:

|ξ − l/Q| > c1 ε
3/2L−1 ≥ Cnε

− 6
n−1λ−1/2.

for all l ∈ Z
n, by the assumptions on L and λ, and (3.13) follows from (3.6).

4. Lower bounds.

In this section we prove the lower bound (2.8). We start by proving an analogous

estimate in the settings of the group of congruence classes of the modulus Q:

Z
n
Q = (Z/QZ)

n
. Let ε > 0 and let q, Q ∈ N such that q divides Q. Let

f : Z
n
Q → [0, 1] be a function satisfying the following two conditions

(4.1)
∑

m∈Zn
Q

f(m) ≥ 4ε

5
Qn

and for each s ∈ Z
n
Q

(4.2)
∑

m∈Zn
Q

f(qm+ s) ≤ 10ε

9
Qn

Note that if f is the characteristic function of a set A ⊆ Z
n
Q then by equation

(4.1) the density of A is at least 4ε/5, while by (4.2) the density of A is at most

10ε/9 in any of the congruence classes of the modulus q. We say that the set

A is well-distributed in these congruence classes. For λ ∈ Z we consider the

following quantity:

(4.3) N = N(f,Q, λ) =
∑

m,l∈Zn
Q

f(m)f(m− l)ωλ,Q(l),
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where the function: ωλ,Q : Z
n
Q → N is defined by

(4.4) ωλ,Q(l) = |{k ∈ Z
n : |k|2 = λ, k ≡ l (mod Q)}

that is the number of lattice points of length λ1/2 which are congruent to l

modulo Q. We will make use of the Fourier transform on Z
n
Q:

f̂(s) =
∑

m∈Zn
Q

e−2πi m·s
Q f(m)

and note that

(4.5) ω̂λ,Q (s) =
∑

k∈Zn, |k|2=λ

e−2πi k·s
Q = σ̂λ(s/Q).

Lemma 2: Let 0 < ε < 1 and let q,Q, λ be positive integers such that k divides

q for all k ≤ Cn ε
− 6

n−4 , q divides Q, and λ > CnQ
2 ε−

12
n−1 .

If f : Z
n
Q → [0, 1] is a function satisfying (4.1) and (4.2) then for Cn large

enough, one has

(4.6) N(f,Q, λ) ≥ c λn/2−1Qnε2,

where c > 0 is a constant depending only on the dimension n.

Proof. Using the Fourier transform on Z
n
Q, similarly as in (2.4), one has

N = N(f,Q, λ) =
1

Qn

∑

s∈Zn
Q

|f̂(s)|2 σ̂λ(s/Q).

Write Q = Q1q and decompose the summation into two terms according to

whether Q1 divides s;

N =
1

Qn

∑

s1∈Zn
q

|f̂(Q1s1)|2 σ̂λ(s1/q) +
1

Qn

∑

Q1∤s

|f̂(s)|2 σ̂λ(s/Q) = M + E.

Here the main term M is obtained by writing s = Q1s1 where s1 is running

through Z
n
q . Let fq : Z

n
q → [0, 1] be defined by:

fq(m) = Q−n
1

∑

k∈Zn
Q1

f(m+ qk),

that is the average of f over the congruence class of m with respect to the

modulus q. Then f̂q(s) = Q−n
1 f̂(Q1s), thus by equation (4.5) and Plancherel

(4.7) M =
Q2n

1

Qn

∑

s1∈Zn
q

|f̂q(s1)|2 σ̂λ(s1/q) = Qn
1

∑

m,l∈Zn
q

fq(m)fq(l)ωλ,q(m− l).
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Note that (4.1) and (4.2) is equivalent to

(4.8)
∑

m∈Zn
q

fq(m) ≥ 4ε

5
qn and fq(m) ≤ 10ε

9
, for all m ∈ Z

n
q .

If G = {m ∈ Z
n
q : fq(m) ≥ ε/10 } then the sum of fq(m) for m /∈ G is at most

qnε/10 thus by (4.8)

(4.9) |G| ≥ 9

10ε

∑

m∈G

fq(m) ≥ 63

100
qn.

Hence for every l ∈ Z
n
q ,

∑

m∈Zm
q

fq(m) fq(m− l) ≥ ε2

100
|G ∩ (G+ l)| > ε2

500
qn.

Substituting back to (4.7) one has

(4.10) M ≥ ε2Qn

500

∑

l∈Zn
q

ωλ,q(l) =
ε2Qn

500
σ̂λ(0) ≥ cnQ

nε2λn/2−1,

where the constant cn > 0 depends only on the dimension n.

Now let Cn be chosen as in Proposition 1. with respect to c = cn/2. If Q1

does not divide s, then for every l ∈ Z
n

∣

∣

∣

s

Q
− l

q

∣

∣

∣
≥ 1

Q
≥ ε−

6
n−1 λ−

1
2

The conditions of Lemma 1. are satisfied, thus

|σ̂λ(s/Q)| ≤ cn
2
ε3 λ

n
2 −1,

hence by Plancherel |E| ≤ cn

2 ε3Qnλn/2−1, and the lemma follows with

c = cn/2.

Next, our aim is to reduce estimate (2.8) to that of (4.6). First, one has

Proposition 2: Let Q, λ ∈ N and let L ≥ λ1/2. Then one has

(4.11) N2(A, λ,Q,L) ≥ cnQ
n L−n

∑

m∈Zn

∑

cl∈Zn

|l|≤√
nL

1A(m) 1A(m− l)ωλ,Q(l).

Proof. Define the distribution δQ by

〈δQ, φ〉 =
∑

m∈Zn

Qn φ(Qm),
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then by Poisson summation

(4.12) 〈δ̂Q, φ〉 = 〈δQ, φ̂〉 =
∑

l∈Zn

φ(l/Q).

Thus by Plancherel

N2(A, λ,Q,L) = 〈1̂A, 1̂Aσ̂λ(ψ̂L ∗ δ̂Q)〉 = 〈1A, 1A ∗ σλ ∗ (ψLδQ)〉,

where ψL(x) = L−nψ(x/L). If l ∈ Z
n such that |l| ≤ √

nL then

σλ ∗ (ψLδQ)(l) =
∑

k∈Zn

σλ(k)ψL(l − k) δQ(l − k)

≥ cnQ
nL−n

∑

k: Q|l−k

σλ(k) = cnQ
nL−nωλ,Q(l).

Indeed, if σλ(k) 6= 0, then |k| = λ1/2 ≤ L; hence |l − k| ≤ (
√
n + 1)L and

ψL(l − k) ≥ cnL
−n. This proves the Proposition.

Assume that R > 10λ1/2, choose L such that λ1/2 ≤ L ≤ 2λ1/2 and R/L is

an integer. Divide the box BR into Rn/Ln boxes BL(j) of equal size L, and let

F denote the set of boxes in which the density of A remains large:

(4.13) F = {j : |A ∩BL(j)| ≥ (4ε)/5Ln}.

It is easy to see that |F| ≥ ε
10

Rn

Ln . If fj denotes the characteristic function of

the set A ∩BL(j), then by (4.12)

(4.14) N2(A, λ,Q,L) ≥ cnQ
nL−n

∑

j∈F

∑

m,l∈Zn

fj(m) fj(m− l)ωλ,Q(l),

since the diameter of each box BL(j) is at most
√
nL.

The function ωλ,Q is constant on the congruence classes mod Q, hence the

inner sum in (4.15) can be written in the form

L2n

Q2n

∑

m,l∈Zn
Q

fj,Q(m) fj,Q(m− l)ωλ,Q(l) where

fj,Q(m) =
∑

k∈Zn

fj(Qk +m) =
Qn

Ln
|{m′ ∈ A ∩BL(j) : m′ ≡ m (mod Q)}|

If one assumes that A ∩ BL(j) is well-distributed in the congruence classes

mod q, that is if for every s ∈ Z
n and j ∈ F

(4.15)
∑

m∈Zn
Q

fj,Q (qm+ s) = |{m ∈ A ∩BL(j) : m ≡ s (mod q)}| ≤ 10ε

9

Ln

qn
,
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then the functions fj,Q satisfy (4.1) and (4.2)

∑

m∈Zn
Q

fj,Q (m) =
Qn

Ln
|A ∩BL(j)| ≥ 4ε

5
Qn

∑

m∈Zn
Q

fj,Q (qm+ s) =
Qnqn

Ln

∑

k∈Zn

fj(qk + s) ≤ 10ε

9
Qn.

If the parameters q,Q, λ satisfy the conditions of Lemma 2, then from (4.6)

and (4.15) one obtains the lower bound

(4.16) N2(A, λ,Q,L) ≥ cnQ
−nLn |F| ε2Qnλ

n
2 −1 ≥ cn ε

3Rnλ
n
2 −1.

5. Proof of Theorem 2.

We are in a position to apply an induction argument to prove our main result.

Let ε0 = Q0 = J0 = 1 and for k = 1, 2, . . ., define

(5.1) εk = (9/10)k , qk =

[

Cn ε
− 6

n−4

k

]

!! and Qk = qkQk−1.

Moreover, we define Jk be the smallest integer satisfying

(5.2) Jk ≥ 2Jk−1 + Cn log Qk + Cn ε
−3
k log (ε−1

k ),

where [ ] stands for the integer part, and M !! denotes the least common multiple

of the natural numbers 1 ≤ m ≤ M . Here, Cn > 0 is a large constant to be

chosen later. Note that, by the prime number theorem, it is easy to see that

log (Qk) . ε
−6/ n−4
k ≤ ε−3

k if n ≥ 6, hence in that case the second term of (5.2)

may be omitted.

We prove by induction that (εk, Qk, Jk) is regular for all k in the sense de-

scribed in the introduction. So assume on the contrary that (εk−1, Qk−1, Jk−1)

is regular, but (εk, Qk, Jk) is not. Then there exists a sequence: λ1, λ2, . . . , λJk

with 10λj < λj+1 a cube BR of size R ≥ 10λ
1/2
Jk

, and a set A ⊂ BR with

|A| ≥ εkR
n, such that for all 1 ≤ j ≤ Jk

(5.3) λj Q
2
k /∈ d2(A).

First we show that for every L ≥ (λJk/2)1/2Qk and for every cube BL ⊂ BR

of size L and s ∈ Z
n, one has

(5.4) |A′| = |{m ∈ Z
n : qkm+ s ∈ A ∩BL}| ≥

10ε

9

Ln

qn
k

.
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Indeed, otherwise the set A′ is contained in a cube BR′ of size R′ = L/qk of

density at least εk−1. Since R′ = L/qk > λ
1/2
Jk/2 ≥ 10λ

1/2
Jk−1

, by induction, there

is a j ≤ Jk−1 such that: λjQ
2
k−1 ∈ d2(A′). Then λjQ

2
k−1q

2
k = λjQ

2
k ∈ d2(A)

contradicting our indirect assumption.

Let Jk/2 ≤ j ≤ Jk. To get in agreement with the notations of the previous

sections, let ε = εk, q = qk, Q = Qk. If the constant Cn is chosen large enough

then, by (5.1) and (5.2), the conditions of inequality (3.12) are satisfied for

λ = λjQ
2 and L′ = L′

j = δλ1/2 with δ = ε6(n−1)+3/2. Thus

(5.5) N1(A, λ,Q,L′) ≤ cn
2
ε3Rnλn/2−1.

Let λ1/2 ≤ Lj ≤ 2λ1/2 be chosen such that R/Lj is an integer. Then inequal-

ity (4.17) applies with L = Lj , thus

(5.6) N2(A, λ,Q,L) ≥ cn ε
3Rnλn/2−1.

By our indirect assumption, N(A, λ) = 0 for each λ = λjQ
2, Jk/2 ≤ j ≤ Jk.

We decompose the integral N(A, λ) into three terms, as described in the intro-

duction

(5.7) N(A, λ) = N1(A, λ,Q,L′) +N2(A, λ,Q,L) +N3(A, λ,Q,L, L′),

where N3(A, λ,Q,L, L′) is defined by the above equation. Thus by (5.5) and

(5.6) one has

(5.8) |N3(A, λjQ
2, Lj , L

′
j)| =

∣

∣

∣

∣

∫

Πn

|1̂A(ξ)|2σ̂λ(ξ)Φj(ξ) dξ

∣

∣

∣

∣

≥ cn
2
ε3Rnλn/2−1,

where

(5.9) Φj(ξ) =
∑

l∈Zn

ψ̂(L′
j(ξ − l/Q)) − ψ̂(Lj(ξ − l/Q)).

Note that the integral N3(A, λjQ
2, Lj , L

′
j) captures the contribution of the

region: {ξ : L−1
j ≤ |ξ − l/Q| ≤ δ−1L−1

j , l ∈ Z
n} to the integral N(A, λ). Since

|σ̂λ(ξ)| . λn/2−1 one has

(5.10) N3(j) :=

∫

Πn

|1̂A(ξ)|2|Φj(ξ)| ≥ cn ε
3Rn.

On the other hand, the integrands are essentially supported on disjoint sets,

in fact one has

(5.11)
∑

Jk/2≤j≤Jk

|Φj(ξ)| . log (ε−1)
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which implies

(5.12)
∑

Jk/2≤j≤Jk

N3(j) . log (ε−1)Rn.

This clearly contradicts (5.10) as Jk has been chosen to satisfy:

Jk > Cn ε
−3
k log (ε−1

k )

with a large enough constant Cn. Finally, to see (5.11) first note that the

functions:
∑

Jk/2≤j≤Jk

ψ̂(L′
j(ξ − l/Q)) − ψ̂(Lj(ξ − l/Q))

have disjoint supports for different values of l. Thus it is enough to show that

for fixed l, for η = ξ − l/Q:
∑

Jk/2≤j≤Jk

|ψ̂(L′
jη) − ψ̂(Ljη)| .

∑

j: L′
j
|η|<1

min (Lj |η|, 1)

.
∑

j: Lj |η|<1

Lj |η| +
∑

j: 1≤Lj |η|<δ−1

1 . log (ε−1).

This follows using the properties of ψ̂ given in (3.10) and the fact that

L′
j ≤ δLj. We have reached a contradiction to our indirect assumption and

Theorem 2 is proved.

It is not hard to estimate the size of Qε for any given ε > 0. Indeed if

εk ≤ ε < εk−1 then we take Qε = Qk. Now Qk =
∏k

l=1 ql where ql = Ml !! ≤
exp (Cn ε

−6/ n−4
l ). It follows Qε ≤ exp (Cn ε

−6/ n−4) for some constant Cn de-

pending only on the dimension n.
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